
POOSL workshop

Arjan Mooij

Bart Theelen

Jozef Hooman

22

POOSL - Parallel Object-Oriented Specification Language

Language for light-weight modeling and analysis of systems,
including both software and digital hardware

• Developed at Eindhoven Univ. of Tech., Electrical Engineering

• Stable since 2002

Object-oriented modeling language with

• Concurrent parallel processes

• Synchronization: message passing & shared memory

• Timing

• Hierarchical structure

• Object-oriented data structures

• Stochastic behaviour

Supported by simulation tools, e.g., for performance analysis

3

Rotalumis
(command line & server)

POOSL tool landscape

SHESim
(GUI)

Rotalumis
(command line)

Simulation

• interactive

• high performance

Editing

Inspection + MSCs

POOSL IDE
(GUI)

Simulation

• interactive

Simulation

• high performance

Editing

Inspection + MSCs

4

POOSL tool positioning

• General user experiences with SHESim:

– Positive

• Used in many industrial projects at TNO-ESI

• Expressive modeling language (POOSL)

• Interactive simulation

– Negative

• Usability aspects: Many windows, many mouse operations, inline errors, …

• Early fault detection: Most faults are only detected during simulation

� Initial focus for the new POOSL IDE:

• Textual editing

• Early fault detection

• Eclipse-based environment

5

Start new POOSL project

Create POOSL project

• Click on File -> New -> Project… and select POOSL project

• Next; give name: “workshop.example”; Finish

Create POOSL model

• Right-click on directory “models”; select New -> POOSL Model

• Next; give name: “stream1a.poosl”; Finish

Edit file: double-click on it (or drag to edit window)

• <CTRL>-<SPACE> content assist

• <CTRL>-<SHIFT>-<F> automatic formatting

• <CTRL>-S: save

• Comments: // and /* .. */

6

Stream example

generator :

Generator

viewer :

Viewer
out in

out ! msg (“store”, 1+2)

out ! hi ()

portprocess channel

in ? msg (command, val)

in ? hi ()

Synchronous communication: send and receive statements are only executed

if a matching statement is ready to execute

Matching: same message name and number of parameters

Examples of matching communication pairs (in & out are connected):

in ! talk (“hello”) out ? talk (stringvar)

! : send

? : receive

7

stream1a.poosl - Generator

• Use <CTRL>-<SPACE> and select process class

• Change the template to:

Note:
• Errors detected
• Click on the quick-fix of

last one

assignment

; means sequential composition

8

stream1a.poosl - Viewer

• Similarly create a Viewer process

local variable

9

stream1a.poosl - system

• Finally define the system – use content assist: system class

generator :

Generator

viewer :

Viewer
out in

10

Simulation

POOSL model can be simulated by

• right click on file name or in editor of file, select Run As > POOSL Simulation

For this model there is no visible output, so use debug mode:

• right click on file name or in editor of file, select Debug As -> POOSL Simulation

This opens Debug perspective; switch between edit and debug

perspective by buttons in top-right corner:

or (without text)

Note: models can also be edited in Debug perspective

(first stop simulation!) – start simulation in debug mode as above

After the first simulation, it can be

restarted using the drop down menu

right of the “debug” button:

11

Running and stepping

12

Reordering of life lines: click and hold to drag the lifeline

Sequence diagrams

Press red button to record

13

Hands on stream1a.poosl

• Create a new POOSL project

• Create and edit stream1a.poosl

• Simulate the model in debug mode

– Try different ways of simulating steps

– Observe the sequence diagram, try reordering of life lines

• Experiment in editor with errors and quick fixes

14

Notion of time

Time can be represented in POOSL by statement delay d

• It postpones the execution of the process by “d” time units

• All other statements do not take time

Delay statements are only executed if no other statement can be

executed

Note: denotes the current simulation time

15

Delay example

msg(3)

msg(5)

msg(7)

16

stream1b.poosl - timing

Add time to Generator and Viewer to represent time needed to

generate a message and to display a message, resp., e.g.:

Save and simulate the new model in debug mode

Observe time stamp left of sequence diagram

17

Debug perspective

Debug view shows all process instances (and simulation time):

• Red: can do step

• Blue: can do time step

• Black: no step possible

When not simulating, click on instance to show its execution tree

and its variables

18

Select step to execute from execution tree

To execute a step of a particular instance, double click on it

or right-click on it and click on the

“Perform transition …” message:

19

Hands on stream1b.poosl

• [Stop simulation of stream1a]

• Copy stream1a.poosl to stream1b.poosl

• Edit stream1b.poosl, add delays

• Simulate stream1b in debug mode

– Try time steps, inspect variables

• Investigate changes in delay values

• Try the delay example:

20

stream2.poosl – process parameters & multiple instances

Copy file to stream2 and add parameters to processes

Generator:

Viewer:

• add time parameter “receiveTime” to class definition

• receive messages with 2 parameters: String and Integer

21

stream2.poosl – process parameters & multiple instances

Define system as follows:

viewer :

Viewer
in

gen1 : Generator out

gen2 : Generator out

gen3 : Generator out

22

Hands on stream2.poosl

• Copy stream1b.poosl to stream2.poosl

• Edit stream2

• Simulate the model in debug mode

– Observe the sequence diagram

• Change timing parameters

– For which values of timing parameters will all generators send their

messages regularly?

2323

Data Objects

• Passive sequential entities

• Can be created dynamically

• Encapsulate their attributes

• Accessible only through method calls

• Single inheritance and polymorphism

24

stream3.poosl – define data class

Copy to stream3.poosl and add data class:

use of pre-defined

printString for Integer

25

Generator

Viewer

stream3.poosl – use data class

methods calls

returning message

26

stream3.poosl

Simulate the model in debug mode

• Inspect sequence diagram;

see property view in lower left corner,

click on messages in sequence diagram

• Inspect received message

in Variables view

• Change printString of messages and

see how it is used in sequence diagram

27

Predefined data classes

Implicitly imported: BasicClasses.poosl ;

• See Outline view in lower left corner of editor

28

Hands on stream3.poosl

• Copy stream2.poosl to stream3.poosl

• Edit stream3

• Simulate the model in debug mode

– Observe the sequence diagram, inspect the Properties view

– Inspect received messages in the Variables view

• Experiment with changes in the printString method of messages

– Observe the use in the sequence diagram

• Inspect the contents of BasicClasses.poosl

29

generationLayer : GenerationLayer

stream4.poosl - cluster

viewer :

Viewer
inout

gen1 : Generator out

gen2 : Generator out

gen3 : Generator out

30

stream4.poosl - cluster

31

Hands on stream4.poosl

Copy stream3.poosl to stream4.poosl

Simulate the model with a cluster in debug mode.

Experiment with changes in the setting of the sequence diagram

Also try right click on instance

in sequence diagram and

• Hide

• Collapse

• Expand

Note: by default, message buffer contains last 1000 messages

32

stream5a.poosl - multiple channels

generationLayer : GenerationLayer

viewer :

Viewer

in1out1gen1 : Generator out

gen2 : Generator out

gen3 : Generator out

out2

out3

Adapt the cluster to obtain three output channels

in2

in3

33

stream5a.poosl - select input

Viewer – use three input channels in1, in2, in3

Use <CTRL>-<SPACE>

to insert select statement

Use quick-fix to correct

“messages” part

Adapt system definition to connect all three to input of viewer

34

stream5b.poosl - guards

Add guards to the receive statements in the viewer, e.g.

Add declaration of “next” and an initialization method, e.g.,

• init()() which initializes “next” and calls receiveMessage()()

35

stream5c.poosl– conditional receive

Restrict received messages by conditional receive, e.g.,

36

Hands on stream5.poosl

Save stream4.poosl for later use and copy it to stream5a.poosl

• Edit stream5a

– Simulate in debug mode; observe that in the sequence diagram the channel

is visible in Properties view in lower left corner

• Edit stream5b

– Simulate in debug mode

• Edit stream5c

– Simulate in debug mode

37

stream6.poosl – asynchronous communication
add queue

Create library with queue model

• Right click on project name “workshop.example” > New > Folder

– name: lib

• Right click on folder name > New > POOSL Model

– name: queue.poosl

• Open nl.esi.poosl.example/models/MPSoC/common.poosl

• Copy data classes Element and Queue to queue.poosl

Make a copy of model stream4.poosl and name it: stream6.poosl

In stream6.poosl insert on the first line:

38

stream6.poosl – change Viewer to include queue

parallel

construct

guard

39

Hands on stream6.poosl

• Copy stream4 to stream6.poosl

• Edit stream6

• Simulate stream6.poosl

– Observe the behaviour, including the queue size

– Change timing behaviour to get more / less elements in the queue

40

Random generator

See Outline (lower left corner of editor)

Imports > BasicClasses > Data classes >

Data class RandomGenerator

• random(): Real ; uniform distribution, value in [0,1)

• randomInt(i: Integer): Integer ; value in { 0, 1, …, i-1} (i>0)

• randomSeed(): RandomGenerator

• seed(i: Integer): RandomGenerator ; set seed to i

Documentation on BasicClasses:

http://poosl.esi.nl/downloads/manuals/BasicClasses.pdf

See, for instance, FileIn, FileOut, Socket

41

stream7.poosl - use random generator

42

stream7.poosl – system definition

Cluster is not used

• Simulate and observe Queue size in Variables window

notation for Real

43

Breakpoints in process methods

3 ways to add breakpoints:

• Double click ruler in front of line in editor

• Right click ruler in front of line and select Toggle Breakpoint.

• Use shortcut Ctrl+Shift+B to set a breakpoint on current line.

• Breakpoints are visible in Breakpoints view (bottom part)

• “When a breakpoint is hit during simulation, simulation will be

suspended.

hover over buttons to see function

44

Atomicity brackets

Observe that number can be 1 at the end

Compare with a version where

atomicity brackets are added:

45

Other language constructs

46

Other editor features

• Task markers: // TODO // FIXME // XXX

• Searchable outline tree with model structure (including imports)

• Refactor, search-and-replace

• Print, undo, redo, …

As separate plug-in:

• Import from SHESim XML

• Export to SHESim XML (with default graphical layout)

47

Library & Examples

See: nl.esi.poosl.examples/libraries

• distributions.poosl

distribution functions:

– Bernoulli, Beta, Beta4, DiscreteUniform, Exponential, Gamma, Discrete,

Normal, PERT, Triangle, Uniform, Weibull, Histogram

• performance.poosl

function to observe performance

– PerformanceMonitor, LongRunSampleAverage, LongRunSampleVariance,

LongRunTimeAverage, LongRunTimeVariance, LongRunRateAverage,

ConfidenceInterval

Industrial Applications of POOSL

48

Application of system level modeling using POOSL Industry

Design Space Exploration for Advanced Driver Assistance E/E
Architectures

NXP

Performance Analysis and DSE for Mixed-Criticality Computing Systems
in Automotive

TNO and NXP

Rapid Prototyping of a Hybrid Architecture for Movement Control of iXR
Systems

Philips Healthcare

Rapid Prototyping of a Proposed New Architecture for Movement Control
of iXR Systems

Philips Healthcare

Performance Analysis of the Imaging Chain in iXR Systems Philips Healthcare

Rapid Prototyping of the Requirements and Design of the Pedal Handling
Component of iXR Systems

Philips Healthcare

Simulation of Distributed Lighting Systems Philips Lighting

Variability Analysis in Fixed-Order Multi-Core Schedules ASML

Performance Prediction and Design-Space Exploration for Wafer
Scanners

ASML

Performance Modeling of SmartTV Systems TPVision

Performance Analysis of Ethernet AVB NXP

Load Regulation Modeling of Variability 3P Applications for Tacticos Thales Navel
Systems

Performance Analysis of a Printer Data Path Océ

Performance Analysis of Compact Picking Systems Vanderlande
Industries

Simulation Model of Automatic Case Picking System Concept Vanderlande
Industries

49

Real-time performance analysis @ ASML

Goal: bottleneck identification & exploration of design alternatives

• Focus: real-time performance for (multi-rate & multi-core) loop control

• Scale (medium size case): 1500 sensors/actuators, 200 loop control
networks with 4500 tasks, 60 processors in 6 racks

POOSL
Model

Loop-Control
Specifications

Deployment &
Synchronization

Configuration

Platform
Specification

M
e
ch

a
tr

o
n
ic

s
H

a
rd

w
a
re

S
o
ft
w

a
re

Propriety
Scheduler

TPT/TRACE Gantt Chart

Simulation

POOSL models generated

50

Performance & memory @ TPVision (Smart TVs)

Goal: bottleneck identification & exploration of design alternatives

• Focus: real-time performance & memory bandwidth utilization

• Scale: 50 tasks in video/graphics pipelines operating in 5 use cases, 1
multi-core CPU, 2 GPUs, 8 accelerators, 2 main memories

POOSL
Model

SmartTV Apps

Deployment &
Scheduling

Configurations

SoC Platform
Specification

TRACE Gantt Chart

Simulation

Zero-Order
Model

Memory Bandwidth

Statistics (HTML / Excel)

H
a
rd

w
a
re

S
o
ft
w

a
re

Formula
Computation

TNO-ESI Confidential

POOSL models generated

51

Architecture validation @ Philips Healthcare

Use of pre-defined sockets to connect to

• Java program

• Ogre 3D graphics engine

User Input POOSL model and simulation Visualization

User input Control physical part

52

Requirements validation @ Philips Healthcare

• Generate part of POOSL model from Domain Specific Language

Edit requirements

Generate POOSL
model

Analyze completeness of requirements

User Input POOSL model and simulation Visualization

User input Control physical part

53

Current work – textual + graphical editor

Integration of Xtext and Sirius to edit system structure graphically

54

More information

nl.esi.poosl.examples

• examples

– SocketExample: client-server using SocketProcess (and random)

– ATMSwitch: using [Bounded] FIFO buffer

– MarsRover: tasks, mutex, processor

– SoCInterconnects: bus with arbitration

– MPSoC: use of distributions and performance libraries for mapping of

applications to execution platform with scheduling, memory, battery, ….

http://poosl.esi.nl/

jozef.hooman@tno.nl

arjan.mooij@tno.nl

bart.theelen@tno.nl

