
Page 1

Preliminaries

Typesetting

- Italic UpperCamelCase is used for denoting class names. Example: Object

- Italic lowerCamelCase is used for denoting method names: Example: method

- Bold lowercase is used for denoting reserved constants. Examples: nil, true, false

Object

Real Integer CharString Boolean
• FileIn

• FileOut

• RandomGenerator

• Socket

• (Console)

• (Display)

• Observer

Primitive classes

• Instances referenced by syntactic representation

• No subclasses allowed

• = equals ==

• new cannot be used to create new instances

Native classes

• Have native methods Permanent classes

• Cannot be removed from model

• Have no instance variables

• Strings have syntactic representations

Data classes

• User-defined methods may be added

• Instance variables may be added to non-permanent classes

• Subclasses are allowed for all non-primitive classes

User-defined classes

• No native methods
• …

Array

• … • … • …

Nil

Figure 1. Overview of Basic Classes.

Overview of Basic Classes

Four types of data classes are distinguished (see Figure 1):

1. Native classes refer to data classes for instances and/or methods are directly (natively)

implemented in the implementation language of an execution engine.

2. Permanent classes are native classes that must be part of any POOSL model, because they

are used in native methods of primitive classes (see below). Permanent classes do not have

instance variables. For example, class Object cannot have instance variables, because they

would be inherited by primitive classes, which is not possible. Subclasses of permanent

classes can be defined by the user to create extensions with instance variables. Class String is

a permanent class that has syntactic representations of its instances (see below).

3. Primitive classes are permanent classes with a fixed (possibly infinite) collection of instances,

that have syntactic representations of their instances and whose behavior is defined in the

formal semantics of the language
1
. Primitive classes cannot have subclasses. Instances of

primitive classes are called primitive objects. Primitive objects do not have state, in particular

they have no references to other objects.

1
 Note that this documents updates methods of primitive classes that not explicitly defined in the latest formal

semantics, but their interpretation is straightforward.

Page 2

4. User-defined class is a term used for all non-native classes.

User-defined methods can be added for any data class, while user-defined instance variables are not

allowed for permanent classes. Subclasses are not allowed for primitive classes. Instances of data

classes can be created using new, except in case of primitive classes. For primitive classes and

Strings, the syntactic representation allows identifying, respectively creating new instances.

Constants:

- Constant nil is the single instance of class Nil

- Constants true and false are the two only instances of class Boolean

- Integer constants can be expressed in the following syntax. There is no a priori upper bound

or lower bound on the value of an integer constant (in particular, there is no fixed number of

bits to represent an integer)

<Integer> ::= ["-"] <DecimalDigit>+ [("e" | "E") ["+"] <DecimalDigit>+]
 | "0b" <BinaryDigit>+
 | "0o" <OctalDigit>+
 | "0x" <HexadecimalDigit>+
<BinaryDigit> ::= "0" | "1"
<OctalDigit> ::= <BinaryDigit> | "2" | "3" | "4" | "5" | "6" | "7"
<DecimalDigit> ::= <OctalDigit> | "8" | "9"
<HexadecimalDigit> ::= <DecimalDigit> | "a" | "b" | "c" | "d" | "e" | "f"
 | "A" | "B" | "C" | "D" | "E" | "F"

- Real valued constants can be expressed in the following syntax:
<Real> ::= ["-"] <DecimalDigit>+ "." <DecimalDigit>+ [("e" | "E") ["+" | "-"]
 <DecimalDigit>+]

- The syntactic representation of a character, an instance of class Char, begins and ends with a

single quote character ‘. The precise syntax is detailed in Appendix B. In this document, we

refer to the following classes of special characters and character sequences:

• White space characters are: Space(32), TAB(9), CR (13), LF(10), VT(11), FF(12)

• New line character sequences are: CR (13), LF(10), and CR(13) followed by LF(10)

- The syntactic representation of a String begins and ends with a double quote character “. The

precise syntax is detailed in Appendix B.

Types and classes:

- A type C associated with class C consists of nil and all instances of class C and all its

subclasses.

Description of methods:

- In all method descriptions in the remainder of this document, the receiver refers to the

object on which the discussed method is called.

Page 3

Permanent Classes without Constants

Object

This class represents the root superclass of any other data class. It therefore provides generic

methods that are applicable to all data objects.

!=(o: Object): Boolean

Returns true in case o is not equal to the receiver and false otherwise. The result is equivalent to

(receiver = o) not. It has a special syntax of the form o1 != o2, where o1 acts as the receiver and o2 as

the argument

!==(o: Object): Boolean

Returns true in case o is not identical to the receiver and false otherwise. The result is equivalent to:

(receiver == o) not. It has a special syntax of the form o1 !== o2, where o1 acts as the receiver and o2

as the argument.

=(o: Object): Boolean

Implements the equality relation. For primitive objects, = is equivalent to ==. For user-defined

classes, it returns true if o is an object of the same class as the receiver and all instance variables of o

and the receiver are (recursively) equal as well. Otherwise, it returns false. For non-primitive native

classes, the behavior is as defined for the user-defined classes, unless specified differently at the

description of the class. It has a special syntax of the form o1 = o2, where o1 acts as the receiver and

o2 as the argument.

==(o: Object): Boolean

Implements the identity relation. Returns true in case o refers to the same object as the receiver.

Otherwise, it returns false. It has a special syntax of the form o1 == o2, where o1 acts as the receiver

and o2 as the argument.

deepCopy: Object

For user-defined classes not extending non-permanent native classes, it returns a clone of the

receiver as a new object. This means that a new instance of the receiver’s class is returned, where

each instance variable is assigned to clones in a recursive manner, such that all (indirect) references

to the same original object result in references to a single cloned object. The original and cloned data

object structures are isomorphic. For primitive classes, the receiver itself is returned. The non-

permanent native classes (and any user-defined subclasses) do not support copying and therefore,

an error is generated. For non-primitive permanent classes, the behavior is as defined for the user-

defined classes, unless specified differently at the description of the class.

error(s: String): Object

This method allows to signal erroneous behavior. Semantically it does nothing, but tools tend to halt

execution of a model after this method and show message s to the user.

assert(b: Boolean, s: String): Object

This method allows to signal erroneous behavior for a condition b. Semantically it does nothing, but

tools tend to halt execution of a model after this method when expression b evaluates to false and

show message s to the user.

Page 4

printString: String

Returns a String representation of the receiver. It is the typical means used by tools to retrieve a

representation of an object to users of those tools. The standard behavior in class Object returns just

the class name. This is overridden in subclasses to display more specific information on the object. If

the receiver is an instance of a primitive class or class String, the syntactic constant representation of

the receiver is returned.

shallowCopy: Object

For user-defined classes not extending non-permanent native classes, it returns a shallow copy of the

receiver. This means that a new object of the receiver’s class is created, for which the instance

variables refer to the same objects as the corresponding instance variables of the receiver. For

primitive classes, the receiver itself is returned. For non-permanent native classes (and any user-

defined subclasses), an error is generated. For non-primitive permanent classes, the behavior is as

defined for the user-defined classes, unless specified differently at the description of the class.

isOfType(s: String): Boolean

If s does not refer to the name of an existing class, an error is generated. In case s does refer to the

name of an existing class, true is returned in case the receiver is of the type associated with the class

with name s and false otherwise.

Array

This class extends Object. It represents an indexed list of (arbitrary typed) objects. Creating a new

Array yields an indexed list of size 0 (empty Array).

=(o: Object): Boolean

Returns true in case o is an Array of the same size as the receiver and for each index, the objects

both Arrays refer to are equal (in terms of =). Otherwise, it returns false.

deepCopy: Object

Returns a new Array object with the same size as the receiver and at each index, a recursive

deepCopy of the object referred to by the receiver at that index.

shallowCopy: Object

Returns a new Array object with the same size as the receiver and at each index, it refers to the same

object referred to by the receiver at that index.

printString: String

Returns a String equal to “Empty Array” in case the receiver has size 0. Otherwise, it consists of String

“Array(“ followed by a comma separated list of Strings, the result s of calling printString on the

objects from index 1 to the size of the receiver, followed by “)”.

at(i: Integer): Object

Returns the object located at index i in case i ranges between 1 and the size the receiver. Otherwise,

an index out-of-bounds error is generated.

size: Integer

Returns the size of the receiver.

Page 5

putAt(i: Integer, o: Object): Array

Replaces the object at index i with o in case i ranges between 1 and the size of the receiver.

Otherwise, an index out-of-bounds error is generated. It returns the receiver.

putAll(o: Object): Array

Makes all indices in the receiver refer to object o (without making copies). It returns the receiver.

resize(i: Integer): Array

Modifies the size of the receiver to i (in case i >= 0). In case i < 0, an error is generated. When i is

larger than the original size of the receiver, all new locations are filled with nil. When i is smaller than

the original size of the receiver, the objects at indices between i+1 and the original size will no longer

be contained. It returns the receiver.

+(a: Array): Array

Returns a new Array consisting of a copy of the receiver that has the size of the receiver plus the size

of a, where the indices between 1 and the size of the receiver are filled with the objects in the

receiver (in the same order) and the indices between the size of the receiver + 1 and the size of the

returned Array contain the objects in a (in the same order). It has a special syntax of the form a1 +

a2, where a1 acts as the receiver and a2 as the argument.

concat(a: Array): Array

Modifies the receiver by increasing its size with the size of a, where the indices between the size of

the receiver + 1 and the size of the returned Array contain the objects in a (in the same order).

find(i: Integer, o: Object): Integer

This method searches the receiver for object o, starting from index i. If an object equal to o is found,

the index (between 1 and the size of the receiver) at which o is located is returned. In case i is smaller

than 1 or larger than the size of the receiver, an index out-of-bounds error is generated. In all other

cases, it returns 0.

subArray(i, l: Integer): Array

Returns a new Array of size l containing a copy of the objects in the receiver starting at index i in case

i is between 1 and the size of the receiver, l is non-negative and i + l-1 is at most equal to the size of

the receiver. Otherwise, an index out-of-bounds error is generated.

Page 6

Permanent Classes with Constants

String

This class extends Object. It represents the class of strings (of arbitrary size).

=(o: Object): Boolean

Returns true in case o refers to a String identical to the receiver. Otherwise, it returns false. It has a

special syntax of the form o1 = o2, where o1 acts as the receiver and o2 as the argument.

deepCopy: Object

Returns a new String, identical to the receiver.

shallowCopy: Object

Returns a new String, identical to the receiver.

+(s: String): String

Returns the concatenation of the receiver and s (as a new String). It has a special syntax of the form

s1 + s2, where s1 acts as the receiver and s2 as the argument.

concat(s: String): String

Modifies the receiver by concatenation with s. It returns the receiver.

cr: String

Modifies the receiver by concatenation with a carriage return character CR(13). It returns the

receiver.

lf: String

Modifies the receiver by concatenation with a line feed character LF(10). It returns the receiver.

tab: String

Modifies the receiver by concatenation with a tab character HT(9). It returns the receiver.

find(i: Integer, s: String): Integer

This method searches the receiver for a substring s, starting from index i. If pattern s is found, the

index (between 1 and the size of the receiver) at which s starts is returned. In case i is smaller than 1

or larger than the size of the receiver, an index out-of-bounds error is generated. In all other cases, it

returns 0.

at(i: Integer): Char

Returns the character at index i in case i ranges between 1 and the size of the receiver. Otherwise, an

index out-of-bounds error is generated.

size: Integer

Returns the number of characters constituting the receiver.

putAt(i: Integer, c: Char): String

Modifies the receiver by replacing the character at index i with c in case i ranges between 1 and the

size of the receiver. Otherwise, an index out-of-bounds error is generated. It returns the receiver.

subString(i, l: Integer): String

Returns a new String containing a copy of the substring with size l, starting at index i in case i is

Page 7

between 1 and the size of the receiver, l is non-negative and i + l-1 is at most equal to the size of the

receiver. Otherwise, an index out-of-bounds error is generated.

unmarshal: Object

This method reconstructs an Object from a standardized String representation as created by the

method marshal of class Object. If the receiver does not conform to the syntax and static semantics

as described in Appendix A, an error occurs.

splitOn(c: Char): Array

Returns an Array of String objects, constructed by splitting the receiver into substrings at characters

c. The new String objects in the returned Array do not contain character c. Notice that in case the

receiver contains a sequence of characters c, the returned Array will contain empty Strings. In case c

is not included in the receiver, the returned Array solely contains a copy of the receiver.

splitOnWhiteSpace: Array

Returns an Array of String objects, constructed by splitting the receiver into substrings delimited by

one or more white space characters. The new String objects in the returned Array do not contain any

white space characters. White space characters at the beginning and end of the receiver are ignored

and if the receiver consists of white space characters only, an empty Array is returned. In case the

receiver does not contain any white-space characters, the returned Array solely contains a copy of

the receiver.

isBoolean: Boolean

Returns true in case the receiver is the String representation of a Boolean object and false otherwise.

No extra white space or other characters are allowed.

isChar: Boolean

Returns true in case the receiver is the String representation of a Char object and false otherwise.

The character must include surrounding single quotes and may use escape characters. No extra white

space or other characters are allowed. See preliminaries for the syntax.

isReal: Boolean

Returns true in case the receiver is the String representation of a Real object and false otherwise. No

extra white space or other characters are allowed. See preliminaries for the syntax.

isInteger: Boolean

Returns true in case the receiver is the String representation of an Integer object and false

otherwise. No extra white space or other characters are allowed. See preliminaries for the syntax.

toBoolean: Boolean

If the receiver is the String representation of a Boolean object (in line with the isBoolean method),

this object is returned. Otherwise, nil is returned.

toChar: Char

If the receiver is the String representation of a Char object (in line with the isChar method), this

object is returned. Otherwise, nil is returned.

toReal: Real

If the receiver is the String representation of a Real object (in line with the isReal method), this object

is returned. Otherwise, nil is returned.

Page 8

toInteger: Integer

If the receiver is the String representation of an Integer object (in line with the isInteger method),

this object is returned. Otherwise, nil is returned.

<(s: String): Boolean

Returns true in case the receiver is lexicographically ordered before s and false otherwise. It has a

special syntax of the form s1 < s2, where s1 acts as the receiver and s2 as the argument.

<=(s: String): Boolean

Returns true in case the receiver is lexicographically before or is equal to s and false otherwise. It has

a special syntax of the form s1 <= s2, where s1 acts as the receiver and s2 as the argument.

>(s: String): Boolean

Returns true in case the receiver is lexicographically ordered after s and false otherwise. It has a

special syntax of the form s1 > s2, where s1 acts as the receiver and s2 as the argument.

>=(s: String): Boolean

Returns true in case the receiver is lexicographically after or is equal to s and false otherwise. It has a

special syntax of the form s1 >= s2, where s1 acts as the receiver and s2 as the argument.

Page 9

Primitive Classes

Nil

This class extends Object. It represents the class of instance nil.

Boolean

This class extends Object. It represents the class of Booleans. This class has two instances

represented with the constants true and false.

&(b: Boolean): Boolean

Returns the logical and of the receiver and b. It has a special syntax of the form b1 & b2, where b1

acts as the receiver and b2 as the argument.

|(b: Boolean): Boolean

Returns the logical or of the receiver and b. It has a special syntax of the form b1 | b2, where b1 acts

as the receiver and b2 as the argument.

not: Boolean

Returns the logical inverse of the receiver. In addition to the normal syntax, it also has a special

syntax of the form ! b, where b acts as the receiver.

xor(b: Boolean): Boolean

Returns the logical xor of the receiver and b. It is equivalent to (receiver!= B).

Char

This class extends Object. It represents the class of individual Extended ASCII characters and

therefore has 256 instances representing each of the extended ASCII characters.

asciiIndex: Integer

Returns the ASCII index number of the receiver.

asString: String

Returns a new String consisting of the single receiver character.

Integer

This class extends Object. It represents the class of (unbounded) integer numbers.

-: Integer

Returns the negation of the receiver. It has a special syntax of the form -i, where i acts as the receiver

-(i: Integer): Integer

Subtracts i from the receiver and returns the result. It has a special syntax of the form i1 - i2, where

i1 acts as the receiver and i2 as the argument.

Page 10

*(i: Integer): Integer

Returns the product of the receiver and i. It has a special syntax of the form i1 * i2, where i1 acts as

the receiver and i2 as the argument.

&(i: Integer): Integer

Returns an Integer representing the bit-wise and of the two’s-complement of the receiver with i. It

has a special syntax of the form i1 & i2, where i1 acts as the receiver and i2 as the argument.

+(i: Integer): Integer

Returns the sum of the receiver with i. It has a special syntax of the form i1 + i2, where i1 acts as the

receiver and i2 as the argument.

<(i: Integer): Boolean

Returns true in case the receiver is smaller than i and false otherwise. It has a special syntax of the

form i1 < i2, where i1 acts as the receiver and i2 as the argument.

<=(i: Integer): Boolean

Returns true in case the receiver is smaller than or equal to i and false otherwise. It has a special

syntax of the form i1 <= i2, where i1 acts as the receiver and i2 as the argument.

>(i: Integer): Boolean

Returns true in case the receiver is greater than i and false otherwise. It has a special syntax of the

form i1 > i2, where i1 acts as the receiver and i2 as the argument.

>=(i: Integer): Boolean

Returns true in case the receiver is greater than or equal to i and false otherwise. It has a special

syntax of the form i1 >= i2, where i1 acts as the receiver and i2 as the argument.

|(i: Integer): Integer

Returns an Integer representing the bit-wise or of the two’s-complement of the receiver with i. It has

a special syntax of the form i1 | i2, where i1 acts as the receiver and i2 as the argument.

abs: Integer

Returns the absolute value of the receiver.

asAsciiChar: Char

Returns the character by using the receiver as its ASCII index number in case the receiver ranges

between 0 and 255. Otherwise, an index out-of-bound error is generated.

asReal: Real

Returns a Real object with the same value as the receiver.

div(i: Integer): Integer

Returns the Integer A such that A*i + B equals the receiver for some B and 0 <= B < i if i > 0 and i < B

<= 0 if i < 0.

/(i: Integer): Integer

This method is identical to the method div. Returns the Integer A such that A*i + B equals the

receiver for some B and 0 <= B < i if i > 0 and i < B <= 0 if i < 0.

fac: Integer

Returns the factorial of the receiver in case the receiver is non-negative. Otherwise, an error is

generated. (Notice that 0! = 1).

Page 11

modulo(i: Integer): Integer

Returns the Integer B such that A * i + B equals the receiver for some Integer A and 0 <= B < i if i > 0

and i < B <= 0 if i < 0.

monus(i: Integer): Integer

Returns the difference of the receiver with i if the receiver > i or 0 otherwise.

not: Integer

Returns the bit-wise negation of the receiver. It is equivalent to: -receiver - 1.

power(i: Integer): Integer

Returns the receiver raised to the power of i in case i is non-negative. Otherwise, an error is

generated.

sqr: Integer

Returns the square of the receiver.

max(i: Integer): Integer

Returns the maximum of the receiver and i.

min(i: Integer): Integer

Returns the minimum of the receiver and i.

xor(i: Integer): Integer

Returns the bit-wise xor of the receiver and i.

Real

This class extends Object. Its instances represents real numbers using IEEE 754-2008 floating point

representations. Note that the arithmetic operators below operate as specified by this standard.

Whenever the standard specifies exception occur, errors will be given.

-: Real

Returns the negation of the receiver. It has a special syntax of the form -r, where r acts as the

receiver.

-(r: Real): Real

Subtracts r from the receiver and returns the result. It has a special syntax of the form r1 - r2, where

r1 acts as the receiver and r2 as the argument.

*(r: Real): Real

Returns the product of the receiver and r. It has a special syntax of the form r1 * r2, where r1 acts as

the receiver and r2 as the argument.

/(r: Real): Real

Returns the quotient of the receiver with r. It has a special syntax of the form r1 / r2, where r1 acts as

the receiver and r2 as the argument.

+(r: Real): Real

Returns the sum of the receiver with r. It has a special syntax of the form r1 + r2, where r1 acts as the

receiver and r2 as the argument.

Page 12

<(r:Real): Boolean

Returns true in case the receiver is smaller than r and false otherwise. It has a special syntax of the

form r1 < r2, where r1 acts as the receiver and r2 as the argument.

<=(r: Real): Boolean

Returns true in case the receiver is smaller than or equal to r and false otherwise. It has a special

syntax of the form r1 <= r2, where r1 acts as the receiver and r2 as the argument.

>(r: Real): Boolean

Returns true in case the receiver is greater than r and false otherwise. It has a special syntax of the

form r1 > r2, where r1 acts as the receiver and r2 as the argument.

>=(r: Real): Boolean

Returns true in case the receiver is greater than or equal to r and false otherwise. It has a special

syntax of the form r1 >= r2, where r1 acts as the receiver and r2 as the argument.

abs: Real

Returns the absolute value of the receiver.

acos: Real

Returns the arccosine of the receiver if the receiver is in [-1.0, 1.0]. Otherwise, an error is generated.

asin: Real

Returns the arcsine of the receiver if the receiver is in [-1.0, 1.0]. Otherwise, an error is generated.

asInteger: Integer

Returns an Integer representation of the receiver denoting the integer number closest to the

receiver. Rounding is as follows: for positive numbers: � rounds to �� + �
�� for negative numbers �

rounds to �� − �
�	.

atan: Real

Returns the arctangent of the receiver.

atan2(r: Real): Real

Returns the angle in radians between the vector (receiver ,r) and the vector (1,0).

ceiling: Real

Returns the smallest rounded Real that is not smaller than the receiver.

cos: Real

Returns the cosine of the receiver (as an angle in radians).

exp: Real

Returns e (the base of the natural logarithm) to the power of the receiver.

floor: Real

Returns the largest rounded Real that is not larger than the receiver.

ln: Real

Returns the natural logarithm of the receiver if the receiver is positive. Otherwise, an error is

generated.

Page 13

log: Real

Returns the 10-based logarithm of the receiver if the receiver is positive. Otherwise, an error is

generated.

monus(r: Real): Real

Returns the difference of the receiver with r if the receiver > r or 0 otherwise.

power(r: Real): Real

Returns the receiver raised to the power of r.

round: Real

Returns the rounded Real closest to the receiver (as an Integer). Rounding is as follows: for positive

numbers: � rounds to �� + 1
2� for negative numbers � rounds to �� − 1

2	.

sin: Real

Returns the sine of the receiver (as an angle in radians).

sqr: Real

Returns the square of the receiver.

sqrt: Real

Returns the square root of the receiver in case the receiver is non-negative. Otherwise, an error is

generated.

tan: Real

Returns the tangent of the receiver (as an angle in radians).

max(r: Real): Real

Returns the maximum of the receiver and r.

min(r: Real): Real

Returns the minimum of the receiver and r.

Page 14

Native Non-Permanent Classes

RandomGenerator

This class extends Object. It represents a generator of pseudo-random values with a uniform

distribution U[0,1).

random: Real

Returns a Real sample from distribution U[0,1).

randomInt(i: Integer): Integer

Returns an Integer sample from discrete uniform distribution [0, i-1] for i > 0. In case i <= 0, an error

is generated.

randomiseSeed: RandomGenerator

This method arbitrarily modifies the seed for the sequence of pseudo-random numbers successively

produced by calling methods random and randomInt. The exact behavior is implementation

dependent, typically setting the seed to a time-dependent value. Note that when the randomiseSeed

or seed methods are not used, every instance of this class will produce the same sequence of pseudo

random numbers. Using randomiseSeed disables exact reproductions of executions. It returns the

receiver.

seed(i: Integer): RandomGenerator

Sets the seed of the receiver to i. It returns the receiver.

FileIn

This class extends Object. It provides a means to read information from files. Creating a new FileIn

yields an object without referring to any concrete file.

source(s: String): FileIn

Specifies the file to read information from. s is a file name (possibly with an absolute or relative path

reference – where the syntactic symbols / and \ for path references can be used interchangeably

independent of OS). It returns the receiver.

open: FileIn

Locks the referred file for read access. It assumes that method source has previously been called to

identify the concrete file to refer to. Otherwise, an error is generated. It returns the receiver.

atEndOfFile: Boolean

Returns true in case the read pointer in the file points at the end of the file and false otherwise.

close: FileIn

This method and releases the referred file for further access. It returns the receiver.

read(i: Integer): String

This method reads the next first i characters from the referred file and returns that as a String if i is

non-negative. If fewer than i characters are available, a String is returned consisting of the number of

Page 15

available characters (until the end of the file). The read pointer in the file has been advanced till after

the last read character. In case i is negative an error is produced.

readUntil(c: Char): String

This method returns nil if the read pointer is at the end of the file. Otherwise, it returns the sequence

of characters (as a String) until the next occurrence of character c in the file, or until the end of the

file, whichever comes first. The read pointer has been advanced till after the character c if c was

found or is at the end of the file if the end of the file has been encountered. The character c is not

part of the returned String.

readWord: String

This method returns nil if no non-white space characters exist until the end of the file. Otherwise, it

returns the next consecutive sequence of non-white space characters (as a String) until the first

white space character after this sequence, or until the end of the file, whichever comes first. The

read pointer has been advanced till the first white space character after the sequence in the former

case or is at the end of the file in the latter. None of the white space characters are part of the

returned String.

readLine: String

This method returns nil if the read pointer is at the end of the file. Otherwise, it returns the next

(possibly empty) sequence of non-newline characters (as a String) until the first new line character

sequence , or until the end of the file, whichever comes first. The read pointer has been advanced till

after the longest newline character sequence after the sequence of non-newline characters (if the

line ends in CR(13) followed by LF(10) it advances till after the LF(10)). None of the newline

characters are part of the returned String.

readString: String

This method advances until the next occurrence of a double quote character “. In case the character

sequence starting from the double quote character is a valid syntactical representation of a String

(see Appendix B), then this String is returned and the read pointer in the file has advanced till after

the end of the String representation. If it is not a valid syntactical representation of a String, an error

is generated. If no double quote character is encountered, nil is returned.

FileOut

This class extends Object. It provides a means to write information to files. Creating a new FileOut

yields an object without referring to any concrete file.

destination(s: String): FileOut

Specifies the file to be referred to for writing information to. s is a file name (possibly with an

absolute or relative path reference – where the syntactic symbols / and \ for path references can be

used interchangeably independent of OS). In case a file with destination indicated by N already exists,

that particular file is emptied. It returns the receiver.

open: FileOut

(Re-)opens the referred file for write access. Performing such write accesses will result in first

clearing all existing information in the file (if any). It assumes that method destination has previously

Page 16

been called to identify the concrete file to refer to. Otherwise, an error is generated. It returns the

receiver.

append: FileOut

(Re-)opens the referred file for write access. Performing such write accesses will result in appending

the written information without overwriting the existing information in the file (if any). It assumes

that method destination has previously been called to identify the concrete file to refer to.

Otherwise, an error is generated. It returns the receiver.

flush: FileOut

This method flushes all write buffers to file. It returns the receiver.

close: FileOut

This method flushes all write buffers and releases the referred file for further access. It returns the

receiver.

write(s: String): FileOut

Writes the String s to the referred file (not its syntactic representation). It returns the receiver.

writeLine(s: String): FileOut

Writes the String s to the file (its characters, not its syntactic representation) followed by new line

character LF(10). It returns the receiver.

writeString(s: String): FileOut

Writes a syntactic representation of String s to the file. In particular, s is encoded as detailed in

Appendix B. It returns the receiver.

Socket

This class extends Object. It provides a means to communicate via TCP/IP through sockets. Creating a

new Socket yields an unconnected TCP/IP socket. For simplicity reasons, a Socket supports at most

one connection between a server and client. After a connection has been established, new requests

to setup a connection with a different client are refused.

acceptFrom(i: Integer): Socket

Passively accepts a TCP/IP connection from local port i. It returns the receiver.

connectTo(s: String, i: Integer): Socket

Actively establishes a TCP/IP connection to a remote socket with remote server named s or with IP

address s and remote port number i. It returns the receiver.

isConnected: Boolean

Returns true in case is the receiver is connected and false otherwise.

isDisconnected: Boolean
2

Returns true in case is the receiver is disconnected and false otherwise.

close: Socket

Releases the concrete socket (if it was created) for further communication. It returns the receiver.

2
 Note that methods isConnected and isDisconnected may both return false at some moment in time. Only one

of them can return true at any moment in time.

Page 17

hasCharacters(i: Integer): Boolean

Returns true in case there are at least i characters available for reading and false otherwise.

read(i: Integer): String

This method reads the next sequence of i available characters and returns them as a String if i is non-

negative. If fewer than i characters are available, a String is returned consisting of the number of

available characters. The read pointer has been advanced till after the last read character. In case i is

negative, an error is produced.

hasCharacter(c: Char): Boolean

Returns true in case there is at least one occurrence of character c available for reading and false

otherwise.

readUntil(c: Char): String

This method returns nil if there are no characters available for reading (without advancing the read

pointer). Otherwise, it returns the sequence of characters (as a String) until the next first occurrence

of character c, or the sequence of all available characters in case character c does not occur. The read

pointer has been advanced till after the last read character. The character c is not returned as part of

the String.

hasWord: Boolean

Returns true in case a non-empty sequence of non-white space characters is available for reading,

preceded by a possibly empty sequence of white-space characters and succeeded by at least one

white space character. Otherwise, it returns false.

readWord: String

This method returns nil in case no sequence of non-white space characters is available that is

succeeded by a white space character (without advancing the read pointer). Otherwise, it returns the

sequence of non-white space characters (as a String) after a possibly empty sequence of white-space

characters, until the first white space character after this sequence. The read pointer has been

advanced till immediately after the first white space character after the sequence of non-white space

characters. None of the white space characters before or after the word are part of the returned

String.

hasLine: Boolean

Returns true in case a newline character sequence is available (possibly after other characters) and

false otherwise.

readLine: String

This method returns nil in case no new line character sequence is available (without advancing the

read pointer). Otherwise it returns the sequence of non-new line characters (as a String) until the

first new-line character sequence after this sequence. The read pointer has been advanced till after

the longest new-line character sequence immediately following the non-newline characters (if the

line ends in CR(13) followed by LF(10) it advances till after the LF(10)). The new line characters are

not part of the returned String.

hasString: Boolean

Returns true in case in the sequence available for reading the first occurrence of a double quote

forms with a sequence of following characters either a (complete) syntactic representation of a

Page 18

String, or is an invalid beginning of a syntactic representation of a String, i.e., cannot be completed to

a valid String constant. It returns false otherwise.

readString: String

This method advances until the next occurrence of a double quote character “. In case the character

sequence starting from the double quote character is a valid syntactical representation of a String

(see Appendix B), then this String is returned. The read pointer has advanced till after the end of the

String representation. In case the character sequence is not a valid syntactical representation of a

String and cannot be completed to a valid String, an error is generated. In all other cases, nil is

returned (without advancing the read pointer).

write(s: String): Socket

Writes the String s to the referred socket (not its syntactic representation). It returns the receiver.

writeLine(s: String): Socket

Writes the String s to the referred file (not its syntactic representation) followed by new line

character LF(10). It returns the receiver.

writeString(s: String): Socket

Writes the syntactic representation of s to the socket. In particular, s is encoded as detailed in

Appendix B. It returns the receiver.

Page 19

Appendix B: String and Character Constant

Syntax

A string constant is defined by a sequence of characters from the extended ASCII set of 256

characters enclosed by double quotation marks. Special syntax is added to represent non-printable

characters by means of escape sequences that all begin with the backslash (\) symbol. Characters

with ASCII value below 32 (except ASCII value 9) and the two characters ” (double quotation mark,

ASCII value 34) and \ (backslash, ASCII value 92) are not allowed in a string constant except as part of

an escape sequence. The escape sequences that are supported are conforming to the C / Java

specifications and provided in the table below.

Similarly, character constants are represented by a character between single quotation marks for

characters with ASCII values 9 and 32 and above, except the single quotation mark character (ASCII

value 39) and the backslash character (ASCII value 92). Moreover, any escape sequence can be used

(between single quotation marks).

Character ASCII Representation ASCII Value Escape Sequence

Newline NL (LF) 10 \n

Horizontal tab HT 9 \t

Vertical tab VT 11 \v

Backspace BS 8 \b

Carriage return CR 13 \r

Formfeed FF 12 \f

Alert BEL 7 \a

Backslash \ 92 \\

Question mark ? 63 \?

Single quotation mark ' 39 \'

Double quotation mark " 34 \"

Hexadecimal number hh any \xhh

Null character NUL 0 \0

Page 20

The escape sequence using hexadecimal number representation can have 1 or 2 hexadecimal digits.

It is allowed to have a 0 as a first of two digits.

Syntactic representations of String constants are not unique. Whenever a syntactic representation of

a String constant is generated, the following encoding shall be used. For any character which has an

individual encoding shown in the above table, this encoding shall be used. For any other character

with an ASCII value below 32 (except ASCII value 9) the hexadecimal number escape sequence shall

be used. All other characters are not encoded.

