
1

Basic	POOSL	tutorial	

1 Introduction

This	document	contains	a	short	introduction	to	the	language	POOSL	(Parallel	Object-Oriented	

Specification	Language)	with	a	simple	example	written	using	the	POOSL	IDE	in	Eclipse.	

2 POOSL Overview

POOSL	is	based	on	processes	that	can	communicate	through	ports.	For	a	port	P,	there	are	two	

communication	statements:	

• P	!	M(p1,	…,	pn)	:	send	message	M	with	parameters	p1,	…,	pn	via	port	P	

• P?	M(x1,	…,xn)	:	receive	message	M	via	port	P	and	store	the	parameters	in	variables	x1,	

…,	xn.	

The	ports	of	processes	can	be	connected	using	channels.	Communication	is	synchronous,	that	is,	

a	send	statement	is	blocked	until	a	matching	receive	statement	can	be	executed	via	a	connecting	

channel	in	another	process.	Similarly,	a	receive	statement	is	blocked	until	a	matching	send	

statement	can	be	executed	on	a	connecting	channel.	When	a	matching	statement	is	available,	the	

send	and	the	receive	statement	are	executed	simultaneously.	

Processes	can	be	grouped	into	clusters	that	allow	for	hierarchy	definition.	Clusters	may	be	part	

of	other	clusters.	In	addition	to	process	classes	and	cluster	classes,	also	data	classes	can	be	

defined.	

3 A producer-consumer example

Figure	3-1	presents	the	schematic	overview	of	a	producer/consumer	example.	The	components	

are	a	Producer	of	packages,	a	receiver	or	Consumer	for	the	packages	and	a	Network.	

Producer	and	Consumer	are	part	of	an	Application	layer.	Each	component	of	the	Application	

layer	exchanges	information	through	the	network.	The	Producer	creates	packets	that	are	

identified	by	an	ID	and	contain	a	text.	The	Consumer	just	receives	packets.	

Figure 3-1

Producer Consumer

Network

Application

2

4 Data

	A	data	object	contains	its	own	data	and	has	the	possibility	to	perform	operations	upon	this	data.	

This	data	is	stored	in	variables	that	may	contain	(references	to)	other	data	objects.	The	

variables	of	an	object	are	encapsulated	by	that	object;	they	are	not	directly	accessible	by	other	

objects.	They	can	only	be	read	and	modified	by	the	object	itself.		A	data	class	defines	a	number	

of	methods	that	can	be	used	access	of		change	the	private	data	variables.	

Besides	user-defined	data	classes,	there	are	a	number	of	so-called	primitive	data	classes,	which	

have	been	predefined.	Examples	of	primitive	data	objects	are	integers	(3,	10,	32769),	reals	(

2.33),	logical	values	(true,	false)	and	characters	(‘a’,	‘b’).		

4.1 Example

For	our	example	we	created	one	data	class	for	Packets	sent	through	the	network.	A	Packet	

object	contains	an	identifier	and	a		text	of	type	Integer	and	String,	respectively.	The	data	object	

has	four	methods:	two	methods	to	set	the	internal	variables,	one	to	obtain	the	identifier,	and	

one	to	print	the	content	of	the	Packet.

data class Packet extends Object
variables
 Identifier : Integer,
 Text : String
methods
 setIdentity(I : Integer) : Packet
 Identifier := I ;
 return(self)
 setMessage(S : String) : Packet
 Text := S ;
 return(self)
 GetIdentifier() : Integer
 return(Identifier)
 printString() : String
 /* This method succinctly visualises a packet when inspecting it */
 return("[" + Identifier printString + ": " + Text + "]")

5 Process

Processes	may	contain	internal	variables;	these	variables	are	only	accessible	by	the	process	

itself.	Processes	do	not	share	data.	A	process	contains	a	number	of	methods	that	can	call	each	

other.	A	process	can	only	call	its	own	methods	or	methods	of	data	classes. Each	process,	has	an	

initial	method.	

5.1 Example

Our	example	contains	three	processes:	Network,	Producer	and	Consumer.	Each	process	defines	

the	ports,	the	messages,	the	internal	variables,	and	the	methods.		

The	Network	waits	for	a	Packet	on	port	In	and	next	immediately	sends	it	on	port	Out.		

process class Network()
ports
 Out,
 In
messages

3

 In ? Message(Packet),
 Out ! Message(Packet)
variables
 p : Packet
init
 InitialiseNetwork()()
methods
 InitialiseNetwork()()
 TransferData()()
 TransferData()()
 In ? Message(p) ;
 Out ! Message(p) ;
 TransferData()()

The	Producer	generates	Packets	at	constant	time	intervals.	The	time	interval	is	given	by	

parameter	IdleTime	when	a	Producer	instance	is	created.

process class Producer(IdleTime : Integer)
ports
 Out
messages
 Out ! Message(Packet)
variables
 NextIdentifier : Integer
init
 InitialiseProducer()()
methods
 SendPackages()() | p : Packet |
 p := new(Packet) setIdentity(NextIdentifier) setMessage("Message with
number "+ NextIdentifier printString);
 NextIdentifier := NextIdentifier + 1 ;
 Out ! Message(p) ;
 Idle()()
 InitialiseProducer()()
 NextIdentifier := 1 ;
 SendPackages()()
 Idle()()
 delay(IdleTime) ;
 SendPackages()()

	

The	Consumer	just	receives	Packets.

process class Consumer()
ports
 In
messages
 In ? Message(Packet)
variables
 LastReceivedIdentifier: Integer
init
 ReceivePacket()()
methods
 ReceivePacket()() | p : Packet |
 In ? Message(p) ;
 LastReceivedIdentifier := p GetIdentifier();
 ReceivePacket()()

4

6 Cluster

A	cluster	in	POOSL	consists	of	processes	and	other	clusters	and	behaves	as	an	abstraction	of	

these.		

6.1 Example

The	cluster	Application	contains		instances	of	Producer	and	Consumer	and	two	channels:	one	

that	connects	the	Producer	and	the	Out	port	of	the	cluster	and	one	that	connects	the	In	port	and	

the	Consumer.	The	cluster	is	instantiated	with	a	parameter	for	the	delay	between	messages	that	

is	passed	to	the	Producer	instance.	

cluster class Application(IdleTime:Integer)
ports
 In, Out
instances
 producerInstance : Producer(IdleTime := IdleTime)
 consumerInstance : Consumer()
channels
 { producerInstance.Out, Out }
 { In, consumerInstance.In }

7 System specification

The	system	specification	defines	the	process	and	cluster	instances	and	their	communication	

channels.	The	system	syntax	is	similar	to	that	of		a	cluster	one	except	that	it	is	self-contained,	i.e.	

there	are	no	input	and	output	ports.	

7.1 Example

Our	system	has	two	instances,	of	the	Network	process	and	the	Application	cluster.	For	the	

application	instance	we	have	to	specify	the	delay	parameter.	The	two	instances	are	connected	

by	two	channels.

system
instances
 networkInstance : Network()
 applicationInstance : Application(IdleTime:=2)
channels
 { networkInstance.Out, applicationInstance.In }
 { networkInstance.In, applicationInstance.Out }

5

8 Complete code of the example

/* Data Classes */
data class Packet extends Object
variables
 Identifier : Integer,
 Text : String
methods
 setIdentity(I : Integer) : Packet
 Identifier := I ;
 return(self)
 setMessage(S : String) : Packet
 Text := S ;
 return(self)
 GetIdentifier() : Integer
 return(Identifier)
 printString() : String
 /* This method succinctly visualises a packet when inspecting it */
 return("[" + Identifier printString + ": " + Text + "]")

/* Process Classes */
process class Network()
ports
 Out,
 In
messages
 In ? Message(Packet),
 Out ! Message(Packet)
variables
 p : Packet
init
 InitialiseNetwork()()
methods
 InitialiseNetwork()()
 TransferData()()
 TransferData()()
 In ? Message(p) ;
 Out ! Message(p) ;
 TransferData()()

process class Producer(IdleTime : Integer)
ports
 Out
messages
 Out ! Message(Packet)
variables
 NextIdentifier : Integer
init
 InitialiseProducer()()
methods
 SendPackages()() | p : Packet |
 p := new(Packet) setIdentity(NextIdentifier) setMessage("Message with
number "+ NextIdentifier printString);
 NextIdentifier := NextIdentifier + 1 ;
 Out ! Message(p) ;
 Idle()()

6

 InitialiseProducer()()
 NextIdentifier := 1 ;
 SendPackages()()
 Idle()()
 delay(IdleTime) ;
 SendPackages()()

process class Consumer()
ports
 In
messages
 In ? Message(Packet)
variables
 LastReceivedIdentifier: Integer
init
 ReceivePacket()()
methods
 ReceivePacket()() | p : Packet |
 In ? Message(p) ;
 LastReceivedIdentifier := p GetIdentifier();
 ReceivePacket()()

/* Cluster Classes */
cluster class Application(IdleTime:Integer)
ports
 In, Out
instances
 producerInstance : Producer(IdleTime := IdleTime)
 consumerInstance : Consumer()
channels
 { producerInstance.Out, Out }
 { In, consumerInstance.In }

/* System Specification */
system
instances
 networkInstance : Network()
 applicationInstance : Application(IdleTime:=2)
channels
 { networkInstance.Out, applicationInstance.In }
 { networkInstance.In, applicationInstance.Out }

